Directories and Files

Linux Administration

Asst. Prof. Ashwini Mathur

Overview

Goal :
To copy, move, create, delete, and organize files while working from the Bash shell
prompt.
Objectives :
e |dentify the purpose for important directories on a Linux system.
e Specify files using absolute and relative path names.
e Create, copy, move, and remove files and directories using command-line utilities.
e Match one or more file names using shell expansion as arguments to shell

commands.

Linux File System Hierarchy

The file system hierarchy :

All files on a Linux system a restored on file systems which a reorganized into a single
inverted tree of directories, known as a file system hierarchy.

Tree is inverted because the root of the tree is said to be at the top of the hierarchy,
and the branches of directories and subdirectories stretch below the root.

Figure 1. Significant file system directories

Significant File System Directories

The directory / is the root directory at the top of the file system hierarchy. The /
character is a / so used as a directory separator in file names.

For example, if etc is a subdirectory of the / directory, we could call that directory /etc.
Likewise, if the /etc directory contained a file named issue, we could refer to that file as /etc/issue.

Subdirectories of / are used for standardized purposes to organize files by type and
purpose. This makes it easier to find files. For example, in the root directory, the
subdirectory /boot is used for storing files needed to boot the system.

Important Note

The following terms are encountered in describing file system directory contents:

- Static is content that remains unchanged until explicitly edited or reconfigured.

- Dynamic or variable is content typically modified or appended by active processes.
- Persistent is content, particularly configuration settings, that remain after a reboot.

- Runtime is process- or system-specific content or attributes cleared during reboot.

Important Red Hat Enterprise Linux directories
Location Purpose

/usr Installed software, shared libraries, include files, and static read-only program
data. Important subdirectories include:
- /usr/bin: User commands.
- /usr/sbin: System administration commands.
- /usr/local: Locally customized software.

_ Configuration files specific to this system.

Variable data specific to this system that should persist between boots. Files
that dynamically change (e.q. databases, cache directories, log files, printer-
spooled documents, and website content) may be found under /var.

Runtime data for processes started since the last boot. This includes process
ID files and lock files, among other things. The contents of this directory are

recreated on reboot. (This directory consolidates /var/run and /var/lock
from older versions of Red Hat Enterprise Linux.)

Home directories where regular users store their personal data and
configuration files.

Home directory for the administrative superuser, root.

A world-writable space for temporary files. Files which are more than 10
days old are deleted from this directory automatically. Another temporary
directory exists, /var/tmp, in which files that have not been accessed,
changed, or modified in more than 30 days are deleted automatically.

| /boot Files needed in order to start the boot process. |

/dev Contains special device files which are used by the system to access
hardware.

Practice : File system hierarchy

Match the following items to their counterparts in the table.

Directory purpose Location

This directory contains static, persistent system
configuration data.

This is the system's root directory. -

User home directories are located under this directory.

This is the root account's home directory.

This directory contains dynamic configuration data,
such as FTP and websites.

Regular user commands and utilities are located here.

System administration binaries, for root use, are here.

Temporary files are stored here.

Directory purpose Location

Contains dynamic, non-persistent application runtime

data.

Contains installed software programs and libraries. -

Match the following items to their counterparts in the table.

Directory purpose Location

This directory contains static, persistent system Jetc
configuration data.

This is the system's root directory.

User home directories are located under this directory.

This is the root account's home directory.

This directory contains dynamic configuration data,
such as FTP and websites.

Reqular user commands and utilities are located here. /usr/bin

System administration binaries, for root use, are here.

Temporary files are stored here.

Contains dynamic, non-persistent application runtime
data.

Contains installed software programs and libraries.

LOCatIng flIeS by NameS - = Will see the demonstration also..

[

—

alice bob
VW» —

. O =
log —— messages % = messages

Figure 2.2: The common file browser view (left) is equivalent to the top-down view (right)

Absolute paths

An absolute path is a fully qualified name, and specifying each
subdirectory traversed to reach and uniquely represent a single file.

#Every file in a file system has a unique absolute path name, recognized with a simple rule:-

A path name with a forward slash (/) as the first character is an absolute path name. For exa mp
le, the absolute path name for the system message log file is /var /log/messages. Absolute path
names can be long to type, so files may also be located relatively. When a user logs in and opens
a command window, the initial location is normally the user's home directory.

Relative Paths

Like an absolute path, a relative path identifies a unique file,

Recognizing relative path names follows a simple rule: A path name with anything other than
a forward slash (/) as a first character is a relative path name. A user in the /var directory

could refer to the message log file relatively as log/messages.

Additional Note

For standard Linux file systems, the path name of a file, including all / characters, may be

Each component of the path name separated by / characters may be no more than 255 bytes long. File
names can use any UTF-8 encoded Unicode character except / and the NUL character.

Navigating Paths

Commands

The pwd command displays the , which
helps determine appropriate syntax for reaching files using relative path
names.

The Is command for the specified directory or, if no
directory is given, for the current directory.

Practical Demonstration

Action to accomplish Command

List the current user's home directory (long format) in
simplest syntax, when it is not the current location.

Return to the current user's home directory.

Determine the absolute path name of the current location.

Return to the most previous working directory.

Move up two levels from the current location.
List the current location (long format) with hidden files.

Move to the binaries location, from any current location.

Move up to the parent of the current location. -
Move to the binaries location, from the root directory.

Solutions

Solution

Match the following items to their counterparts in the table.

Action to accomplish Command

List the current user's home directory (long format) in
simplest syntax, when it is not the current location.

Return to the current user's home directory.

cd

Move to the binaries location, from any current location.
Move up to the parent of the current location.
Move to the binaries location, from the root directory.

Managing Files Using Command Line
Tools

Command Line File Management

File management involves creating, deleting, copying, and moving files. Additionally,
directories can be created, deleted, copied, and moved to help organize files logically.

When working at the command line,
to choose either absolute or relative path syntax as most efficient for the

IELIEICRER S

File management commands

Activity Single source ™

4 ote
Multiple source "¢

Copy file cp filel file2 cp filel file2 file3 dir &

Move file mv filel file2 (0 mv filel file2 file3 dir (4)

Remove file rm filel rm -f file1 file2 file3 5

Create directory mkdir dir mkdir -p pari/par2/dir ©
Copy directory cp -r dirt dir2 (2) cp -r dirt dir2 dir3 dir4 =

Move directory mv dirt dir2 mv dirt dir2 dir3 dir4

Remove directory rm -r dir1 rm -rf dirl dir2 dir3 ©

Note: | ’The result is a rename.

The "recursive” option is required to process a source directory.

St dir2 exists, the result is a move. If dir2 doesn't exist, the result is a
rename.

“WThe last argument must be a directory.

“)Use caution with "force" option; you will not be prompted to confirm
your action.

®yse caution with "create parent" option; typing errors are not caught.

Guided Exercise

Problem - 1

In your home directory, create sets of empty practice files to use for the remainder of this lab.
- Use the shell tab completion to locate and complete path names more easily.

1. Create six files with names of the form songX . mp3.

2. Create six files with names of the form snapX . jpg.

3. Create six files with names of the form filmX . avi. In each set, replace X with the numbers 1
through 6.

Problem - 2

From your home directory, move the song files into your Music subdirectory, the snapshot files into your
Pictures subdirectory, and the movie files into your Videos subdirectory.

hen distributing files from one location to many locations, first change to the directory containing the
source files. Use the simplest path syntax, absolute or relative, to reach the destination for each file

management task.

File Permissions

Command : Is -l

File Type # of Hard Links File size

Permissions 1 Owners Last Modify Time
\ [

l \ l |
-rwxr-x--- 1 walbert suppor% 0 Oct 31 11:06 test

el e T -
User Other User Group File name
Group

File type Permission classes

— o
User Group Other
It e IS | Execute

drwxrwxrwx rwx

1ls -1 file
—rw—r—r— 1 root root @ Nov 19 23:49 file

Readable
Writeable
Executable

i Denied

Octals File Permissions

ugo

/54
SN

access r W X r w X " W X
binary 4 2 1 4 Z 1 4 2 1
enabled 1 1 1 1 0 1 1 0 O

result 4 2 1 4 0 1 4 O 0

total V4 5 4

Understanding the permission syntax

To use chmod to set permissions, we need to tell it:

e Who: Who we are setting permissions for.
e What: What change are we making? Are we adding or removing the permission?
e Which: Which of the permissions are we setting?

" n

We use indicators to represent these values, and form short “permissions statements” such as u+x, where “u” means”
user” (who), “+” means add (what), and “x” means the execute permission (which).

The “who” values we can use are:

u: User, meaning the owner of the file.

g: Group, meaning members of the group the file belongs to.

o: Others, meaning people not governed by the u and g permissions.
a: All, meaning all of the above.

The “what” values we can use are:

—: Minus sign. Removes the permission.

e +: Plus sign. Grants the permission. The permission is added to the existing permissions. If you want to have this
permission and only this permission set, use the = option, described below.

e =: Equals sign. Set a permission and remove others.

The “which ” values we can use are;

e r:. Theread permission.
e w: The write permission.
e x: The execute permission.

~

~[Desktop
~[Desktop

~[Desktop
~[Desktop

~[Desktop
~[Desktop

~[Desktop

Demo file.txt

Demn file txt

Demo_file.txt

Permission Octal Meaning
string code

rwxrwxrwx |777 |Read, write, and execute permissions for all users.

rwxr-xr-x (755 |Read and execute permission for all users. The file’s owner also
has write permission.

rwxr-x--- [750 |Read and execute permission for the owner and group. The
file’s owner also has write permission. Users who aren’t the
file’s owner or members of the group have no access to the file.

rwx-—-——-—-—- 700 |Read, write, and execute permissions for the file’s owner only;
all others have no access.

rw-rw-rw- (666 |Read and write permissions for all users. No execute
permissions for anybody.

rw-rw-r—— |664 |Read and write permissions for the owner and group. Read-
only permission for all others.

rw-rw---- |660 |Read and write permissions for the owner and group. No
world permissions.

rw-r—--r—-— |644 |Read and write permissions for the owner. Read-only
permission for all others.

rw—r———-—- 640 |Read and write permissions for the owner, and read-only
permission for the group. No permission for others.

YW= 600 |Read and write permissions for the owner. No permission for
anybody else.

r———————- 400 |Read permission for the owner. No permission for anybody

else.

User and Group Management

Managing Users and Groups

There are four main user administration files :

/etc/passwd — Keeps the user account and password information. This file holds the majority of
information about accounts on the Unix system.

/etc/shadow — Holds the encrypted password of the corresponding account. Not all the systems
support this file.

/etc/group — This file contains the group information for each account.

/etc/gshadow — This file contains secure group account information. Check all the above files
using the cat command

Following Commands to Managing
Users and Groups

adduser : add a user to the system.

userdel : delete a user account and related files.
addgroup : add a group to the system.

delgroup : remove a group from the system.
usermod : modify a user account.

chage : change user password expiry information.

sudo : run one or more commands as another user (typically with
superuser permissions).

Relevant files: /etc/passwd (user information), /etc/shadow
(encrypted passwords), /etc/group (group information) and
/etc/sudoers (configuration for sudo).

athur:~$ sudo adduser guest
‘guest' ...
roup ‘guest' (1002) \

ser ‘guest' (1002) with group ‘"guest'
directory " /home/guest'

s from " /etc/skel'

assword:

ord updated successfully
user information for guest
value, or press ENTER for the default
Name []: Ashish

Number []: 001

Phone []: 7905281329

Phone []:

[]:

ation correct? [Y/n] vy
athur:~$ §§

SU command : Switch user

B guest@AshwiniMathur: /home +
guest@AshwiniMathur: /home$ 1s
ashu guest

g,ﬁst@Ashd!ﬁiﬂizhur:/home$]

Pattern matching Globbing is a shell command-parsing operation that expands a wildcard pattern
into a list of matching path names.

Command-line meta-characters are replaced by the match list prior to command execution.

Patterns, especially square-bracketed character classes, that do not return matches display the
original pattern request as literal text. The following are common metacharacters and pattern
classes.

Pattern

*

Matches

Any string of O or more characters.

?

Any single character.

~

The current user's home directory.

~username

User username's home directory.

The current working directory.

The previous working directory.

[abc...]

Any one character in the enclosed class.

[labc...]

Any one character not in the enclosed class.

[2abc:i:]

Any one character not in the enclosed class.

[[:alpha:]]

Any alphabetic character.”

[[:lower:]]

Any lower-case character.”

[[:upper:]]

1
Any upper-case character.””

[[:alnum:]]

Any alphabetic character or digit.m

[[:punct:]]

Any printable character not a space or alphanumeric.m

[[:digit:]]

Any digit, 8-9."

[[:space:]]

Any one whitespace character; may include tabs, newline, or carriage
returns, and form feeds as well as space.")

Note

mpre-set POSIX character class; adjusts for current locale.

